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We study turn-by-turn fluctuations in the number of spontaneously emitted photons from an un-
dulator installed in the Integrable Optics Test Accelerator (IOTA) electron storage ring at Fermilab.
A theoretical model is presented, showing the relative contributions due to the discrete nature of
light emission and to the incoherent sum of fields from different electrons in the bunch. The model
is compared with a previous experiment at Brookhaven and with new experiments we carried out
at IOTA. Our experiments focused on the case of a large number of longitudinal and transverse
radiation modes, a regime where photon shot noise is significant and the total magnitude of the
fluctuations is very small. The experimental and data analysis techniques, required to reach the
desired sensitivity, are detailed. We discuss how the model and the experiment provide insights
into this emission regime, enable diagnostics of small beam sizes, and improve our understanding of
beam lifetime in IOTA.

I. INTRODUCTION

In the last few decades there were several experiments
regarding statistical properties of incoherent synchrotron
radiation, produced by electron bunches in storage rings
and linear accelerators [1–5]. The fluctuation in the ra-
diated energy (or the number of photons) from pulse to
pulse was studied experimentally and theoretically. It
was shown in [2, 3] that in some cases the rms electron
bunch length can be measured via this fluctuation. More-
over, references [4, 5] suggest that if the fluctuations in
radiation spectrum are measured with a high resolution
spectrometer, then even the shape of the electron bunch
can be reconstructed. These observations, combined with
the fact that fluctuations of the same nature are present
in SASE FELs [6–11], make the study of fluctuations in
incoherent synchrotron radiation relevant for the under-
standing of beam dynamics and for beam diagnostics.

The number of photons radiated incoherently by an
electron bunch in an external electromagnetic field (un-
dulator, wiggler, dipole magnet, etc.) fluctuates from
pass to pass due to the following two mechanisms [12].
The first mechanism is the photon shot noise, related to
the quantum discrete nature of light. This effect would
exist even if there was only one electron. Indeed, the
electron would radiate light with Poisson statistics [13–
15]. The second mechanism is due to the fact that the
field produced by a bunch of electrons is an incoherent
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sum of fields produced by all the electrons in the bunch.
If wave packets of radiation produced by different elec-
trons overlap, the incoherent sum fluctuates from pass to
pass because the positions of the electrons in the bunch
change. In a storage ring, the effect arises because of
betatron motion, synchrotron motion, radiation induced
diffusion, etc.; in linacs, assuming exactly equal bunch
charges, there is a new bunch of electrons at every pass,
the positions of which are not correlated with the posi-
tions of electrons in the previous bunch.

For dense bunches, the fluctuations in the number of
emitted photons are usually dominated by the incoher-
ence contribution [7], as it was the case in [1–5]. In this
paper, we present the results of studies of statistical prop-
erties of undulator radiation in the IOTA ring at Fermi-
lab [16], where the contributions from both mechanisms
are comparable. This also means that the fluctuations
were very small (compared to [1], for instance), and we
present several critical improvements to the setup from
[1, 2].

We start by reviewing the theory of fluctuations in
synchrotron radiation. The theory is relevant for both
storage rings and linear accelerators. However, below
we assume a radiation coming from a single bunch in a
storage ring, where the number of participating electrons
does not fluctuate. We derive an equation for the vari-
ance of the number of detected photons for a Gaussian
electron bunch, taking into account the quantum effi-
ciency of the detector. Then, the theoretical predictions
are compared with the empirical data from [1]. Finally,
we describe our experiment in IOTA [17], and how the
empirical data from this experiment compare with our
model.
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II. THEORETICAL MODEL

Consider incoherent synchrotron radiation (undulator,
wiggler, bending-magnet, etc.), emitted by a Gaussian
bunch consisting of many randomly located electrons.
Let us assume that the synchrotron radiation is collected
in a wide spectral range, and also in a large solid angle.

A. Quantum fluctuations

Whereas in general we consider a bunch with ran-
domly located electrons, in this subsection we fix posi-
tions (phases) of all the electrons and derive the quantum
contribution to the fluctuations. We take an ensemble av-
erage over random positions (phases) of the electrons in
subsection II B.

Conceptually, one can divide the detector into many
detectors, each sensing only one mode of the produced
radiation with the wave vector k. The volume of the
k-space associated with this mode will be denoted by
dk ≡ dkxdkydkz. We can consider periodic boundary
conditions in a cube with side L, then dk = (2π/L)3.
We will always take the limit L→∞ at some point, and
all the sums over modes k will be replaced by integrals.
Upon this transition to integrals, it will also be valid to
use dk = k2dkdΩ, where Ω is the solid angle.

It was shown in [13, 14] that any classical current (cor-
responding to a negligible electron recoil) produces a co-
herent state of radiated electromagnetic field. The co-
herent state in the single mode k is given by [14]

|αk〉 = e−
1
2 |αk|2

∑
nk

αnk

k√
nk!
|nk〉 , (1)

where |nk〉 is the state with nk photons in the mode k
and the exact formula for αk is provided in [14]. For our
purposes, it is sufficient to mention that

|αk|2 = N k,dk
c = Ikdk, (2)

where N k,dk
c is the quasi-classical number of photons

emitted in the mode k, and Ik is the quasi-classical
spectral-angular density of the number of emitted pho-
tons, defined in this paper by the second equality in
Eq. (2). There are two orthogonal polarization compo-
nents for each wavevector k, usually denoted by σ and π
[7]. In this paper, we omit σ and π for the sake of brevity.
If there is a sum or an integral over k in any equation,
it should be understood that there is a sum over both
polarizations as well.

In the coherent state Eq. (1), the number of photons
nk obeys the Poisson statistics. In fact, the mean and
the variance of nk are equal and given by |αk|2 = Ikdk:

〈nk〉 = 〈αk|n̂k|αk〉 = |αk|2 = Ikdk, (3)

var(nk) = 〈αk|(n̂k − 〈nk〉)2|αk〉 = |αk|2 = Ikdk, (4)

where n̂k = â†kâk, with â†k and âk being the creation and
annihilation operators for the mode k.

A conventional approach will be used to account for
the k-dependent quantum efficiency of the detector, ηk,
namely, the beam splitter model, described, for example,
in [18], also see Fig. 1.

FIG. 1. The beam splitter model for quantum efficiency of a
non-ideal detector.

The input-output relations for the beam splitter take
the form

b̂k =
√
ηkâk + i

√
1− ηkv̂k, (5)

d̂k =
√

1− ηkv̂k + i
√
ηkâk, (6)

where âk is the incoming field, v̂k corresponds to the
second input port, which is in the vacuum state in this

model, b̂k and d̂k are transmitted and reflected fields,
respectively. Equation (5) lets us calculate the mean and
the variance for the number of detected photons Nk [18]

〈Nk〉 =
a,v
〈αk, 0|b̂†kb̂k|αk, 0〉a,v = ηk〈nk〉, (7)

var(Nk) =
a,v
〈αk, 0|(b̂†kb̂k − 〈Nk〉)2|αk, 0〉a,v =

ηk〈nk〉+ η2
k(var(nk)− 〈nk〉). (8)

In the second term in Eq. (8) one can see that it is
important to have a high quantum efficiency to be able
to observe the sub- or super-Poisson statistics [19–21] of
a quantum origin. However, for coherent states this term
vanishes, and, using Eqs. (3) and (4), we obtain

〈Nk〉 = var(Nk) = ηkIkdk. (9)

In fact, using Eq. (5) to find how the coherent state
Eq. (1) is transformed by the beam splitter, one can show
that the output state will be a coherent state, and the
number of detected photons Nk will obey the Poisson
statistics as well as nk does. Furthermore, since a sum of
independent random Poisson variables is Poissonian [22],
the total number of detected photons N ,

N =
∑
k

Nk, (10)
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will obey the Poisson distribution with the mean and the
variance given by

〈N〉 = var(N ) =

∫
ηkIkdk = Nc, (11)

where Nc is the total number of detected photons, calcu-
lated in the quasi-classical model, the integration is per-
formed over all k. In Eq. (11) and below in this paper,
〈N〉 denotes the average of the random variable N , not
to be confused with 〈nk〉 in Eq. (3) or 〈Nk〉 in Eq. (7),
where it denotes the expectation values of quantum op-

erators â†kâk and b̂†kb̂k in corresponding coherent states.
All sources of losses can be incorporated into ηk, such
as the detector’s quantum efficiency, losses in focusing
lenses (if used), in the vacuum chamber windows, or due
to the finite detector acceptance (ηk can be set to zero
for radiation angles that are not collected by the detec-
tor). If a spectral filter is used, its transmission function
can be incorporated into ηk and polarization filters can
be accounted for in a similar manner.

In [15], it was shown that the total number of photons
emitted (not detected) by a classical current obeys the
Poisson distribution. Equation (11) is in agreement with
this result, and extends it to the counts in a non-ideal
detector. It is also noteworthy that for 〈N〉 � 1 the
distribution for N is essentially Gaussian.

Equation (11) is in agreement with intuitive under-
standing and is usually taken for granted. In the deriva-
tions presented above, we merely reviewed the proof of
Eq. (11) for synchrotron radiation from the quantum op-
tics perspective.

B. Classical fluctuations

The results of the previous subsection can be summa-
rized as follows

N = ∆ (Nc) +Nc, (12)

where N is the number of photons detected at a certain
turn; Nc is the quasi-classical prediction for the number
of detected photons produced by an electron bunch with
fixed phases; ∆(Nc) is a random variable describing the
quantum fluctuation around the mean value Nc. From
Eq. (11) it follows that

〈∆ (Nc)〉 = 0, (13)

var(∆ (Nc)) = Nc. (14)

In this subsection we take into account the fact that
in reality in a storage ring electron phases are random
each turn. Hence, Nc changes as well. One can still use
Eq. (12) to represent the number of detected photons per
turn, and we will use the same symbol for this variable N
in this subsection. However, it should be understood that
the random variableN in this subsection is different from
that in Subsec. II A. In this subsection, N incorporates

both the quantum fluctuation ∆ (Nc) and the classical
fluctuation of Nc from turn to turn.

One can calculate var(N ) by taking the variance of
Eq. (12):

var(N ) = var(∆ (Nc) +Nc). (15)

We would like to use the fact that

var(a+ b) = var(a) + var(b) (16)

for independent a and b. However, ∆ (Nc) and Nc are, in
general, not independent. Nonetheless, if, on average, a
large number of photons is detected per turn 〈Nc〉 � 1,
then ∆ (Nc) can be approximated by ∆ (〈Nc〉), which
is independent of Nc. In this approximation, Eq. (15)
becomes

var(N ) = var(∆ (〈Nc〉)) + var(Nc). (17)

Equation (14) can be used in Eq. (17) to obtain

var(N ) = 〈Nc〉+ var(Nc), (18)

where 〈Nc〉 can be replaced with 〈N〉 according to
Eqs. (12) and (13).

Equation (18) can be rewritten in the form of [7, 23]

var(N ) = 〈N〉+
1

M
〈N〉2, (19)

where the parameter M was introduced. In this paper it
is defined as

1

M
≡ var(Nc)

〈Nc〉2
, (20)

however, it can be identified with the number of coherent
modes defined in [7, 24], therefore we will use this name
for the parameter M from now on.

In this subsection, we find M by explicitly calculating
var(Nc) = 〈N 2

c 〉 − 〈Nc〉2 and using Eq. (20). To begin

with, we introduce I
(1)
k , i.e., the quasi-classical spectral-

angular density of the number of emitted photons for the
case when there is only one electron in the storage ring,
by the following relation

dN (1)
c

dk
= ηkI

(1)
k . (21)

Then, the total quasi-classical number of photons de-
tected in this case is given by

N (1)
c =

∫
dkηkI

(1)
k . (22)

In the derivations below, we will assume that the beam
divergence is negligible compared to the radiation diver-
gence [2, 7, 24]

σx′ , σy′ � σr′ . (23)
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Also, it is assumed that the electrons’ momentum
spread σp is sufficiently small, so that all the electrons
in the bunch produce radiation with approximately the
same spectrum ∣∣∣∣∣∂I(1)

k

∂p

∣∣∣∣∣σp � ∣∣∣I(1)
k

∣∣∣ . (24)

If conditions (23) and (24) are fulfilled (typical for an
electron storage ring, [1, 2, 17]), one can use the following
formula for Nc [2, 7, 24]

Nc =

∫
dkηkI

(1)
k

∣∣∣∣∣∑
m

eik·rm

∣∣∣∣∣
2

, (25)

where m = 1, . . . , Ne, with Ne being the number of elec-
trons in the bunch; rm ≡ (xm, ym,−ctm), xm and ym

describe the transverse position of mth electron when
it enters the synchrotron light source (undulator, wig-
gler, bending magnet, etc.) at time tm. Accordingly, the
square of Nc is given by

(Nc)2 =

∫
dk1dk2ηk1I

(1)
k1
ηk2I

(1)
k2
×∣∣∣∣∣∑

m

eik1·rm

∣∣∣∣∣
2 ∣∣∣∣∣∑

n

eik2·rn

∣∣∣∣∣
2

. (26)

We consider a Gaussian distribution of particles in the
bunch along x, y and ct, with rms sizes σx, σy and σz,
respectively. The following two mathematical identities
can be derived in this case

〈

∣∣∣∣∣∑
m

eik·rm

∣∣∣∣∣
2

〉 = Ne +Ne (Ne − 1) e−K·Σ, (27)

〈

∣∣∣∣∣∑
m

eik1·rm

∣∣∣∣∣
2 ∣∣∣∣∣∑

n

eik2·rn

∣∣∣∣∣
2

〉 = N2
e +Ne(Ne − 1)e−∆12·Σ+

Ne(Ne − 1)
[
Ne
(
e−K1·Σ + e−K2·Σ

)
+ 2 (Ne − 2) e−(K12+∆12)·Σ +

(
N2
e − 3Ne + 3

)
e−(K1+K2)·Σ

]
, (28)

where the average is taken over each electron’s position,
K ≡ (k2

x, k
2
y, k

2
z) (K1 and K2 are defined analogously),

Σ ≡ (σ2
x, σ

2
y, σ

2
z), K12 ≡ (k1xk2x, k1yk2y, k1zk2z), ∆12 ≡

((k1x − k2x)2, (k1y − k2y)2, (k1z − k2z)
2).

In this paper, we consider radiation with sufficiently
short wavelengths where contribution of coherent syn-
chrotron radiation (CSR) is negligible. It corresponds to
the condition where kzσz − lnNe � 1. It is satisfied in
the Brookhaven experiment [1] (kzσz ∼ 7× 105), and in
our experiment [17] (kzσz ∼ 1.2× 106). Then, it is suffi-
cient to keep only the first term in Eq. (27) and the first
two terms in Eq. (28). Hence, it follows from Eqs. (25)
and (27) that

〈Nc〉 = Ne

∫
dkηkI

(1)
k = NeN (1)

c . (29)

Further, assuming that∣∣∣∣∣∂I(1)
k

∂kz

∣∣∣∣∣ 1

σz
�
∣∣∣I(1)

k

∣∣∣ , (30)

which is usually fulfilled when kzσz � 1 (bunch length
much longer than the radiation wavelength), we can use
the following approximation when integrating in Eq. (26)

e−σ
2
z(k1z−k2z)2 ∼

√
π

σz
δ (k1z − k2z) , (31)

where δ (..) is the Dirac delta function.
Keeping only the first two terms in Eq. (28) and using

Eq. (31) during integration in Eq. (26), and also assuming
Ne � 1, we arrive at the following expression for the
inverse of the number of coherent modes

1

M
≡ var(Nc)

〈Nc〉2
=

√
π
σz

∫
dkdΩ1dΩ2k

4ηkn1
I

(1)
kn1

ηkn2
I

(1)
kn2

e−k
2σ2

x(θ1x−θ2x)2−k2σ2
y(θ1y−θ2y)2(∫

dkηkI
(1)
k

)2 , (32)

where n1 ≈ (θ1x, θ1y, 1), n2 ≈ (θ2x, θ2y, 1), i.e., it is as-
sumed that the radiation is concentrated at small angles
θx, θy . 1/γ � 1 and the paraxial approximation is used.

Equation (32) is in agreement with Eq. (14) of Ref. [2]
and with a simple order of magnitude estimate of M ,
see Appendix A. In [2], the authors focus on the model
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where the electron bunch and spectral-angular distribu-
tion of the radiation is assumed to be Gaussian. In our
paper, we still consider a Gaussian electron bunch, how-
ever, we do not assume the Gaussian spectral-angular
distribution for the radiation in Eq. (32). Instead, we
have used the expression for spectral-angular intensity
distribution for the undulator radiation from Ref. [25].
In the limit of a large transverse electron bunch size, one
can use approximations for the x- and y-directions, anal-
ogous to Eq. (31), in Eq. (32) to simplify it further. In the
opposite limiting case, i.e., σx, σy → 0, one can omit the
exponent in Eq. (32). More information on the limiting
cases can be found in [2, 26]. In the numerical exam-
ples in this paper (the Brookhaven experiment [1] and
our experiment [17]) we use the full version of Eq. (32)
and perform numerical integration, since the values of
the parameters in these experiments correspond to an
intermediate case.

The assumption of a Gaussian bunch distribution
works well in the IOTA ring for x,x′,y,y′, and p. How-
ever, in some cases, it does not properly describe the
distribution along z. The exact reason why is discussed
in Subsection III B 3. Fortunately, Eq. (32) can still be
used, provided that σz is replaced by the effective σz:

σeff
z =

1

2
√
π
∫
ρ2(z)dz

, (33)

where

ρ(z) ≡ 1

Ne

dNe
dz

. (34)

Equation (32) does not reveal the exact distribution
for Nc, it only gives the variance var(Nc). However,
the form of the distribution can be suggested by a sim-
ple qualitative argument when the number of longitu-
dinal modes ML is much larger than one (for bending-
magnet radiation ML ∼ kzσz, for undulator radiation
ML ∼ kzσz/Nu). Indeed, in this case the total quasi-
classical number of detected photons Nc is a sum of
a large number of independent random numbers of de-
tected photons coming from small longitudinal slices of
the bunch. Therefore, according to the central limit the-
orem, Nc must obey a normal distribution with good
accuracy. More details on the exact distribution for Nc

can be found in [3, 7, 23, 27–29] which suggest that, in
the general case of incoherent spontaneous radiation, the
quasi-classical radiated power obeys Gamma statistics.

III. COMPARISON WITH EXPERIMENTAL
DATA

A. Brookhaven experiment

In the early experiment at Brookhaven National Lab
[1], the fluctuations in the wiggler and bending-magnet
radiation were studied at the Brookhaven Vacuum-
Ultraviolet Electron Storage Ring. The data in Fig. 2

were extracted from the original paper [1] by digitizing
the plot. The scale was also changed from log-log to a
linear scale. This procedure could have introduced some
deviations from the original data, but the deviations are
believed to be negligible. We did not attempt to compare
the empirical data for bending-magnet radiation from [1]
with our theoretical model’s predictions, since the au-
thors of [1] indicated that the data likely represented the
statistical properties of the secondary photons produced
in the Pyrex vacuum chamber window, rather than the
statistical properties of the original bending-magnet ra-
diation.

FIG. 2. Experimental data from Ref. [1] for wiggler radiation
and predictions made by our theoretical model. The noise
variance (≈ 3× 108) has been subtracted from the data.

The data for the wiggler radiation was collected for
the fundamental harmonic, λ1 = 532 nm. An optical in-
terference filter with FWHM = 3.2 nm and a maximum
transmission at λ1 was used. The rms strength param-
eter of the wiggler was Kw = 4, the number of periods
Nw = 22.5, the period length λw = 10 cm. The electron
beam energy was 650 MeV. A silicon PIN photodiode
was used to convert the wiggler radiation photons into
photoelectrons. Two configurations of the beam optics
in the vicinity of the wiggler were studied, i.e., two trans-
verse beam profiles: a tightly focused beam and a loosely
focused beam (see Ref. [1] and Fig. 2). The mean pho-
toelectron count was mainly varied by using a variable
neutral density filter.

Since the values of the photoelectron count variance
var(N ) for the wiggler radiation in Fig. 2 are much larger
than the values of photoelectron count mean 〈N〉, it can
be argued that the quantum Poisson contribution (the
first term in Eq. (19)) is negligible in this experiment
for the wiggler radiation. Therefore, according to our
theoretical model the only remaining source of fluctu-
ation is the incoherence contribution (the second term
in Eq. (19)). We calculated it by performing numeri-
cal integration in Eq. (32) using the parameters of the
electron bunch, the wiggler, and the filter, given in [1].
The Gaussian model of the filter was used. Our the-
oretical model, i.e., Eq. (32), predicted the following
values for the number of coherent modes: for tightly
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focused beam, MTFB = 5.6× 104; for loosely focused
beam, MLFB = 6.1× 104. One can see in Fig. 2 that
our prediction for the tightly focused beam agrees with
experimental points very well.

However, the points for the loosely focused beam de-
viate from our prediction. In terms of the number of
coherent modes the error is about 20 % for the loosely
focused beam. It is practically impossible to find the ex-
act reason for this disagreement now, because the mea-
surements were taken about three decades ago, and it is
difficult to reconstruct the exact conditions of the exper-
iment. In part, this is what motivated us to carry out an
independent study in IOTA.

B. IOTA experiment

The Integrable Optics Test Accelerator (IOTA), lo-
cated at Fermilab’s Accelerator Science and Technology
(FAST) facility, is a small storage ring designed for exper-
iments with both electron and proton beams. We refer
the reader to Ref. [16] and Table I for the description
of the ring and its parameters. In this experiment, the
IOTA ring operated with electrons only.

In IOTA, the values of the parameters of the elec-
tron bunch and of the undulator are such that the quan-
tum and the incoherence contributions to radiation fluc-
tuations are comparable, whereas the latter is usually
dominant. Also, due to significant intrabeam scattering,
the bunch dimensions strongly depend on beam current.
Through Eq. (32), the fluctuations themselves therefore
acquire a complex dependence on beam current.

1. Experimental apparatus

The general layout of IOTA during the experiment is
presented in Fig. 3. Beam injection takes place between
M1L and M1R. The beam circulates clockwise. An un-
dulator was inserted in the straight section between M3R
and M4R. A photodetector was installed in a dark box
on top of the M4R dipole magnet.

The light produced in the undulator was directed to
the photodetector by a system of two mirrors. Then, it
was focused on the sensitive area of the detector with a
lens, see Fig. 4.

Parameters of the undulator [30] installed in IOTA,
along with other essential parameters of the experiment
are listed in Table I. The experiment employed an
InGaAs PIN photodiode (Hamamatsu G11193-10R [32])
to convert short (σz/c ≈ 1.2 ns) pulses of the undula-
tor radiation into electric current pulses of roughly the
same duration. For this experiment, there was a sin-
gle bunch in the IOTA ring, circulating with a revo-
lution period of 133 ns. The photodetector circuit is
shown in Fig. 5. The photo-current pulse quickly charges
a capacitor Cf = 2 pF and then this capacitor slowly
(RfCf = 20 ns) discharges through a resistor, Rf = 10 kΩ,

FIG. 3. Layout of IOTA. The circumference of the ring is
40 m.

FIG. 4. Schematic of light propagation from the undulator to
the photodetector (not to scale).

FIG. 5. A schematic of the photodetector circuit with an op-
amp-based (Texas Instruments THS4304 [31]) photocurrent
integrator, V = 3.3 V.

see Fig. 6. We also used the resistor R0 = 580 kΩ in our
circuit (Fig. 5) to remove the offset in the output signal
(about 300 mV), produced by the op-amp input bias cur-
rent and the photodiode leakage current. It is important
to select the value of R0 as high as possible to reduce the
resistor Johnson-Nyquist current noise contribution. It
should be noted that the detector circuit could be fur-
ther optimized to increase the signal-to-noise ratio.
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FIG. 6. Typical output of the photodiode current’s integrator.
Each pulse corresponds to one IOTA revolution.

The number of detected photons (i.e., the number of
photoelectrons) is related to the voltage amplitude of the
integrator output signal A by

N =
Cf

e
A, (35)

where e is the electron charge. The amplitude A reached
values up to 1.2 V during the experiment. We studied
the fundamental harmonic of the undulator radiation,
λ1 = 1077 nm. The spectrum of the fundamental was
rather wide (see Fig. 7) due to the small number of pe-
riods (Nu = 10) in our undulator. The FEL gain length
was Lg = 4 m, while the length of the undulator was
only Lu = 0.6 m. Therefore, we observed spontaneous
undulator radiation. We did not use a narrow spectral
filter as in [1]. To focus the radiation on the sensitive
area of the photodiode (�1.0 mm), we used an achro-
matic doublet AC508-150-C from Thorlabs (�2 in) with
focal length of 150 mm, so that the chromatic aberration
would be minimized, see Fig. 4. The distance between

TABLE I. Experimental parameters. The parameters sensi-
tive to beam current or location are given at Ibeam = 1.3 mA
or in the center of the undulator.

IOTA circumference 40 m
Revolution period 133 ns
Beam energy 100 MeV
Max average current 4.0 mA
Emittances, εx, εy 0.32µm, 31 nm
Relative momentum spread, σp 3.1× 10−4

Lattice functions, βx, βy 1.82 m, 1.75 m
Dispersion, Dx, Dy 0.87 m, 0 m
Transverse beam size, σx, σy 815 µm, 75 µm
Longitudinal bunch size, σz 38 cm
Rad. damping rates, 1/τx, 1/τy 0.336 s−1, 0.852 s−1

1/τp 2.22 s−1

Undulator parameter Ku 1.0
Undulator period 55 mm
Number of undulator periods, Nu 10
Fundamental harmonic wavelength, λ1 1077 nm
Photodiode diameter 1 mm
Quantum efficiency @1077 nm 80 %
Beam lifetime > 10 min

FIG. 7. Spectral density of the number of photons emitted
by a single electron in the undulator into a round aperture
with 2 in diameter, located 3.5 m away from the center of the
undulator. The simulation was performed in SRW [33]. The
quantum efficiency curve was obtained by using the photosen-
sitivity data for the photodiode available on the Hamamatsu
website [32].

the center of the undulator and the achromatic doublet
was 3.5 m. An estimate for the collected angle is there-
fore θap = 1 in/3.5 m = 7 mrad, which is comparable to
1/γ = 5 mrad. We believe that the actual aperture was
smaller than the estimated θap due to the periscope with
two mirrors used to look at the undulator radiation, see
Fig. 4. First, the mirrors (�2 in) reduce vertical aperture

by a factor of
√

2, since they are at 45◦ to the direction
of propagation of radiation field. Second, there could be
some misalignment in the periscope. In our simulations
in Subsec. III B 3 we used an elliptical aperture with hori-
zontal semi-axis equal to 3.0 mrad, and vertical semi-axis
equal to 3.0 mrad/

√
2 = 2.2 mrad.

It would be very hard to study small fluctuations of
the amplitude (10−4 − 10−3 rms) with our 8 bit oscillo-
scope (model Rohde&Schwarz RTO1044 4GHz 20 GSa/s)
by looking directly at the integrator’s output signal, see
Fig. 6. To improve the sensitivity of our measurements,
we use a so-called comb filter [34], see Fig. 8. The time
delay between the two arms following the signal split-
ter equals exactly one IOTA revolution period. An ad-
justable phase shifter is used to fine-tune it. The er-
ror can be made as small as a few tenths of a nanosec-
ond. Also, the models of the cables are chosen in such a
way that the losses and dispersion in the two arms are
approximately the same. Then, the signals in the two
arms serve as inputs to a hybrid (model MACOM H-9),
whose outputs are the sum and the difference of the in-
put signals (Σ- and ∆-channels, respectively). Thus, in
the ∆-channel we look directly at the difference between
two consecutive IOTA pulses, i.e., the pulse-to-pulse fluc-
tuation. When looking at the ∆-channel with a scope,
all 8 bits are used effectively. Since all the elements in
the comb filter are passive, practically no noise is intro-
duced. The cross-talk between Σ- and ∆-channels was
κ ≈ 0.7 %, i.e., if the pulses in IOTA were perfectly iden-
tical, there would still be pulses in ∆-channel with am-
plitude of κ ≈ 0.7 % of the amplitude of the pulses in
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Σ-channel. However, this effect was easy to take into
account.

FIG. 8. A schematic of the comb filter, which allows us to
look directly at the amplitude difference between two consec-
utive pulses in IOTA (∆-channel). A two-way resistive power
splitter, employed in our experiment, had a 6-dB insertion
loss (per output channel). The attenuation coefficient in the
hybrid α was about 3 dB, or 0.7 in amplitudes.

To take one measurement of the photoelectron count
variance, we recorded 1.5-ms-long waveforms (corre-
sponding to about 11,000 IOTA revolutions) of ∆- and
Σ-channels with the scope at 20 GSa/s. Since the beam
lifetime in IOTA is longer than 10 min, the change in the
number of electrons in the bunch within one waveform is
negligible.

2. Setup tests and noise subtraction

The ability of the setup to correctly measure the am-
plitude fluctuations in signals similar to Fig. 6 was veri-
fied independently with a test light source, consisting of
a laser diode with an amplifier, modulated by a pulse
generator.

One difficulty that we had to overcome in the experi-
ment in IOTA was that the noise in the ∆-channel was
larger than (yet of the same order as) the turn-by-turn
fluctuations in the pulses. Therefore, a special noise fil-
tering algorithm had to be developed and applied to the
collected waveforms.

The exact procedure for obtaining var(N ) and its un-
certainty from the signals in the ∆- and Σ-channels is
described in Appendix B, including the case of a signal-
to-noise ratio smaller than one.

3. Measurement results for undulator radiation in IOTA
and comparison with theoretical predictions

Two sets of undulator radiation data were collected.
First, measurements were taken at one fixed value of
beam current, 2.6 mA, and the mean photoelectron count
〈N〉 was changed by placing various neutral density fil-
ters in front of the detector. We employed a four-position
filter slider, which was controlled remotely. The beam

was re-injected for each data point, and the measure-
ment started when the beam current decayed to 2.6 mA.
The plot of var(N ) as a function of 〈N〉 for this set of
data is presented in Fig. 9a. The point with maximum
〈N〉 represents the configuration without any filter. The
blue dashed curve is a fit of the form of Eq. (19) for the
experimental points, Mfit = 3.0× 106. In the second set
of data, we did not use any neutral density filters, the
mean photoelectron count 〈N〉 was varied by changing
the electron bunch charge, see Fig. 9b. The beam was
re-injected several times, and every time multiple data
points were collected as the current slowly decayed. The
red triangle data point is the no-filter point from Fig. 9a.
The green dashed straight lines in Fig. 9a,b represent the
predicted Poisson contribution.

To make a theoretical prediction for M and, conse-
quently, for var(N ), we had to know the dimensions of
the electron bunch in IOTA as a function of bunch charge.
To be able to estimate the bunch dimensions for the range
of beam current values in our experiments, we developed
a theoretical model of bunch evolution, including sev-
eral effects and consistent with the available experimen-
tal data.

In addition to synchrotron radiation damping and ra-
diation diffusion, there are three main effects, determin-
ing the bunch parameters in IOTA, namely, intrabeam
scattering [35], multiple Coulomb scattering in the back-
ground gas [36], and longitudinal bunch self-focusing [37]
due to space-charge. We use the method described in
[35, 38] to compute emittance growth rates associated
with intrabeam scattering. Let us define the intrabeam
scattering growth rates in momentum p, in the horizontal
x, and in the vertical y-directions as

1

Tp
=

1

σ2
p

dσ2
p

dt
,

1

Tx
=

1

εx

dεx
dt
,

1

Ty
=

1

εy

dεy
dt
, (36)

In our simulations, we keep the longitudinal bunch size
constant, σz = 38 cm. This value was determined exper-
imentally with a wall-current monitor and it remained
approximately constant for any Ibeam > 0.65 mA. Most
likely, this is due to the above mentioned self-focusing of
the electron bunch in IOTA. The self-focusing also causes
some deviations from Gaussian longitudinal bunch pro-
file. However, Eq. (32) can still be used if one substitutes
σz with σeff

z , see Eq. (33). Since in our model we assume
one specific constant value of σz = 38 cm, it will be valid
only for Ibeam > 0.65 mA (〈N〉 > 1.75× 106).

The horizontal and vertical betatron tunes were de-
coupled and linear coupling was minimized. For typical
bunch dimensions, the intrabeam scattering growth rate
in the y-direction is much smaller than the synchrotron
radiation damping rate [39]. Therefore, vertical emit-
tance is primarily determined by multiple Coulomb scat-
tering in the residual gas. Moreover, this implies that
vertical emittance εy, and, consequently, vertical bunch
size σy do not depend on beam current.

In the x-direction, the horizontal rms emittance at zero
beam current, determined by quantum fluctuations, is
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FIG. 9. Photoelectron count variance var(N ) as a function of photoelectron count mean 〈N〉 for undulator radiation in IOTA.
(a) 〈N〉 was varied by using different neutral density (ND) filters, (b) 〈N〉 was varied by changing the number of electrons in
the bunch. The error bar is constant and equals 8.2× 105, see Appendix B.

εx0 = 3.6× 10−2 µm. The contribution from multiple
Coulomb scattering is negligible compared to that from
quantum fluctuations. For Ibeam > 0.65 mA, both the
contribution from quantum fluctuations, and the contri-
bution from multiple Coulomb scattering are negligible
compared to the intrabeam scattering growth rate (it will
be shown quantitatively below), and, hence, horizontal
emittance εx is defined solely by the balance between the
synchrotron radiation damping rate 1/τx (see Table I)
and the intrabeam scattering growth rate (1/Tx):

1

τx
=

1

Tx
. (37)

In the longitudinal direction, the contribution from
quantum fluctuations could in principle be neglected,
since it was about one order of magnitude smaller than
that from intrabeam scattering, but it was not difficult
to account for it [40], therefore it was taken into con-
sideration. Thus, the rms momentum spread σp was de-
termined by the balance between synchrotron radiation
damping on one side and intrabeam scattering growth
rate and quantum fluctuations on the other side:

σ2
p

τp
=
σ2
p

Tp
+
σ2
p0

τp
, (38)

where σp0 = 8.4× 10−5 is the momentum spread due
to synchrotron radiation alone, in the absence of intra-
beam scattering; 1/τp is the synchrotron radiation damp-
ing rate, see Table I.

At this point in our analysis, we have three unknowns,
namely, εx, εy, σp and only two equations, i.e., Eqs. (37)
and (38). We do not have an equation for the y-direction,
since we do not know the exact composition of the back-
ground gas.

To resolve this uncertainty, we recorded several opti-
cal images of dipole-magnet synchrotron radiation from a
circulating bunch at Ibeam = 1.3 mA. From these images
and from the known betatron and dispersion functions,

it was possible to determine the ratio of transverse emit-
tances, εy/εx = 9.5× 10−2. Given this constraint, we
had two equations and two unknowns at Ibeam = 1.3 mA.
Therefore, we were able to find all the parameters of
the bunch at this value of beam current, εx = 0.32µm,
εy = 31 nm, σp = 3.1× 10−4, σx = 815µm, σy = 75µm,
σz = 38 cm. These are the values given in Table I. This
value of the beam current is marked by an orange dia-
mond in Fig. 9b and by a green vertical line in Fig. 10.

FIG. 10. Results of simulations of intrabeam scattering in
IOTA. Horizontal emittance, and momentum spread in IOTA
as functions of beam current Ibeam and mean photoelectron
count 〈N〉. The green vertical line indicates the beam current
value 1.3 mA, at which we measured the ratio of transverse
emittances by looking at the images of bending-magnet radi-
ation.

As was mentioned above, we believe that the vertical
emittance does not depend on the beam current. There-
fore, we could use the value of εy = 31 nm found at
Ibeam = 1.3 mA for other values of the beam current.
Hence, at this point, at other values of the beam current
we had two unknowns, εx and σp, and two equations,
Eqs. (37) and (38). Thus, we were able to compute εx
and σp (see Fig. 10), and, consequently, all parameters
of the bunch for all current values Ibeam > 0.65 mA. Fi-
nally, Eq. (32) was used to compute M for all values of
beam current Ibeam > 0.65 mA, and Eq. (19) to plot the
theoretical red solid curves in Fig. 9a,b. In Fig. 9b, the
part of the red curve for small values of the beam current
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Ibeam < 0.65 mA is depicted by a dashed curve, indicat-
ing that our assumption of constant σz is altered in this
region.

The experimental parameters, such as beam sizes in
IOTA and the geometry of the radiation detection sys-
tem, have an uncertainty of 10–20%. This translates into
uncertainties in the value of the calculated parameter M .
For a more stringent comparison with the model predic-
tions, a better control and measurement of the beam sizes
is necessary, as planned during future runs of the IOTA
experimental program.

4. Discussion

In Fig. 9a the parameter M is constant. Since the
measurements are taken at one specific value of beam
current, the dimensions of the electron bunch are also the
same during measurements with different neutral density
filters. Therefore, the M parameter must also stay the
same. The red solid curve and the blue dashed curve in
Fig. 9a are parabolas of the form of Eq. (19) with a fixed
M .

However, in Fig. 9b, the M parameter changes signif-
icantly, i.e., from M = 3.5× 106 at 〈N〉 = 3.5× 106, to
M = 4.4× 106 at 〈N〉 = 1.1× 107, due to the changes in
bunch dimensions. Thus, the red solid curve in Fig. 9b
is no longer a parabola.

The variation of M is related to one possible applica-
tion, namely, estimating the bunch dimensions by looking
at the fluctuations in synchrotron radiation in a storage
ring. Clearly, in general, the amplitude of fluctuations
depends on all three bunch sizes, σx, σy, σz. Nonetheless,
in some cases additional constraints or relations may be
available. For example, the ratio of transverse emittances
may be known; or some bunch dimensions may be easily
measurable, e.g., σz in IOTA is large and it can be read-
ily measured with a wall-current monitor. The method of
estimating the bunch dimensions by measuring the fluc-
tuations in synchrotron radiation may be especially use-
ful when one of the bunch dimensions is very small, and
it is difficult to measure it with conventional methods.
Successful measurements of longitudinal bunch size with
this technique were reported in [2, 3]. Moreover, if fluc-
tuations data are available in a wide spectral range, the
longitudinal bunch profile may be reconstructed [4, 5].
However, it should be understood that for this method
to work the radiation must be incoherent, i.e., in order
to measure σz, the wavelength of the radiation should be
significantly smaller than σz. In the opposite limit, ML

is equal to one, and the fluctuations are insensitive to σz.
In Fig. 9a,b, one can see that the Poisson contribution

(green dashed line) is comparable with the incoherence
contribution (second term in Eq. (19)). Usually the inco-
herence contribution is dominant [7]. There are several
reasons why the two terms in Eq. (19) were comparable in
IOTA: the small number of undulator periods Nu = 10;
a relatively small undulator parameter Ku = 1; a rel-

atively low beam current Ibeam < 4 mA (which means
small 〈N〉); and a relatively large σz = 38 cm (which
means large ML). To our knowledge, the experiment in
IOTA is the only one where the Poisson contribution was
significant in undulator radiation, as opposed to [1, 3–
5], for example. However, in bending-magnet radiation,
a situation similar to ours (with a considerable Poisson
term) was observed in [2].

IV. CONCLUSIONS AND OUTLOOK

We derived relations (Eqs. (19) and (32)) to predict the
fluctuations var(N ) in the incoherent synchrotron radia-
tion for a Gaussian electron bunch in undulators, wigglers
and bending-magnets. The formulas properly take into
account the discrete nature of light and the quantum ef-
ficiency of the detector, which is in general a function
of the radiation wavelength. A spectral filter with any
transmission function can be incorporated by including
a transmission function into ηk in Eq. (32). The detector
acceptance can be taken into account by setting ηk to
zero outside of a given angular range.

The predicted variance vs. radiation intensity was
compared with the empirical data from a previous ex-
periment at Brookhaven [1] for the case of wiggler radi-
ation with dominant incoherence contribution and with
new experimental data from IOTA for the case of com-
parable quantum and incoherence contributions. In [1],
the photoelectron count mean 〈N〉 was varied mainly by
using different neutral density filters. In our experiment,
in addition to varying 〈N〉 with different neutral density
filters, we also varied 〈N〉 by changing the beam current
in a wide range. The latter set of data was also used to
refine the model of intrabeam scattering in IOTA.

The fact that the quantum Poisson contribution to
fluctuations was significant in IOTA implied that the
value of fluctuations was very small, about two orders
of magnitude smaller than in [1]. Accordingly, we intro-
duced several critical improvements to the experimental
setup that dramatically increased the measurement sen-
sitivity. In particular, we used a comb filter with a delay
equal to one IOTA revolution and a special noise filtering
algorithm.

In our present experimental configuration, the electron
bunch size, undulator radiation direction, and the pho-
todetector circuit parameters were the main sources of
uncertainty. Future experiments in IOTA with better di-
agnostics and control of the beam parameters may yield
more stringent comparisons between model and data and
deeper insights into these phenomena.

The cleanest way to compare theory and experiment
is to collect the fluctuations data at fixed beam current,
as in Fig. 9a. In this case, the parameter M is constant,
and provides an indirect measurement of the bunch di-
mensions.

In the future, we plan to use a larger electron bunch
(larger M) and consider the case when the quantum Pois-
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son contribution is dominant, i.e., to observe the green
dashed line in Fig. 9a,b experimentally. This will help
calibrate the photodetector circuit, since the slope of the
line is determined by the capacitance Cf .

As it was pointed out in [2–5], the fluctuations in syn-
chrotron radiation can be used to make measurements of
the bunch length on a picosecond scale, and the proof of
principle experiments were successful. In IOTA, the lon-
gitudinal bunch size is relatively large, σz = 38 cm, and
can be easily measured with a wall-current monitor. On
the other hand, the transverse bunch size can be quite
small, down to a few tens of microns, where it may be
hard to measure by conventional methods. The number
of coherent modes M in undulator radiation in IOTA is
very sensitive to the transverse bunch size. Therefore,
it may be possible to estimate the transverse bunch di-
mensions from the fluctuations of the number of detected
photons.
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Appendix A: Estimation of number of coherent
modes

An order of magnitude estimate of the number of co-
herent modes M can be made as the ratio of the radiation
phase space volume Ω and the coherent phase space vol-
ume ΩR [2, 7]:

M =
Ω

ΩR
, (A1)

where

ΩR = 1/ (2k)
3
, (A2)

Ω =

√
1/ (2k)

2
+ ε2x

√
1/ (2k)

2
+ ε2y√

1/ (2k)
2

+ ε2z, (A3)

where εz = σzσω/ω; k is the magnitude of the wave vec-
tor, εx and εy are transverse emittances, and σω/ω de-
scribes the width of the radiation spectrum. It is approx-
imately equal to the inverse of the number of undualtor
periods 1/Nu.

In IOTA, for the fundamental harmonic of undulator
radiation, 1/(2k) = 8.6× 10−8 m, εx = 3.2× 10−7 m,
εy = 3.1× 10−8 m, εz = 0.38 m × 1/10 = 3.8× 10−2 m.
With this values, Eq. (A1) gives M = 1.8× 106. This
number sets the scale for the expected values of M ob-
tained in Subsec. III B 3 by using Eq. (32).

Appendix B: System tests and noise filtering

The measurement system was bench-tested with a spe-
cial light source, which consisted of a fast laser diode
(1064 nm) with an amplifier, modulated by a pulse gener-
ator. We also varied the mean photoelectron count (and
photoelectron count variance) by placing various neutral
density filters between the measurement system and the
test light source. We believe that the fluctuations in the
number of emitted photons in the test light source were
mostly created by the jitter in the pulse generator ampli-
tude. The unknown var(N ) of the test light source was
determined experimentally in our bench tests. A typical
waveform for ∆- and Σ-channels for the test light source
without any neutral density filters is shown in Fig. 11a.
The steps in ∆- and Σ-signals at ∼ 80 ns after the main
peaks are likely produced by signal reflections and im-
perfections of the hybrid, which is designed to work at
frequencies between 2 MHz and 2 GHz. The IOTA pulses
come at 7.5 MHz, which is close to the lower bandwidth
limit of the hybrid. The signal at the integrator output
does not show these steps, see Fig. 6.

One can see in Fig. 11a that the comb-filter technique
works rather well. The amplitudes of the pulses in the ∆-
channel fluctuate significantly from pulse to pulse. And
the range of these fluctuations is much larger than the
noise in the ∆-channel. Therefore, by analyzing these
fluctuations for 11,000 periods, the relative fluctuation of
photoelectron count for the test light source was quite re-
liably determined to be θ ≡ var(N )/〈N〉2 = 3.35× 10−6.

However, in the actual experiment with the undulator
radiation in IOTA, the fluctuations in the pulse ampli-
tudes in the ∆-channel were smaller than for the test
light source, see Fig. 11b. Moreover, they were smaller
than the noise in the ∆-channel. Therefore, it was nec-
essary to develop a method to filter out the instrumental
noise and to extract the actual fluctuations of the pho-
toelectron count.

The idea of the method is the following. First, we an-
alyze the Σ-channel to determine the period with which
the pulses arrive with very high precision (> 7 significant
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FIG. 11. (a) Sample sum (red) and difference (blue) waveforms for the test light source without any neutral density filters,
〈N〉 = 1.8× 107, var(N ) = 1.1× 109, signal/noise� 1; (b) Typical waveform for the undulator radiation in IOTA, 〈N〉 =
0.73× 107, var(N ) = 2.3× 107.

figures). In IOTA, it is the revolution time (133 ns); in
the test light source, it is the period in the pulse gener-
ator, which was chosen to be 133 ns as well. Then, all
the data in Σ- and ∆-channel are mapped onto a sin-
gle period. That is, the time stamp of each sample is
mapped into the remainder of a division operation be-
tween itself and the IOTA revolution period. Further,
these data are binned along the time axis into about
2660 bins, corresponding to the sampling period of the
oscilloscope (50 ps). The bins are numbered by index
i = 1, . . . , 2660; IOTA revolutions are numbered by in-
dex n = 1, . . . , 11000. After this procedure, one has

Σi,n = Vi(1 + δn) + Vi(1 + δn−1) + µ∆i,n + ξi,n, (B1)

∆i,n = Vi(1 + δn)− Vi(1 + δn−1) + κΣi,n + νi,n, (B2)

where Vi represents the pulse signal from the integrator
(up to a certain factor due to attenuation in signal splitter
and hybrid) averaged over 11,000 IOTA revolutions; δn
and δn−1 are the relative fluctuations with respect to the
average pulse signal in nth and (n − 1)th turns, respec-
tively; the parameters µ and κ characterize the cross-talk
between Σ- and ∆-channels; ξi,n and νi,n are the noise
contributions in Σ- and ∆-channels, respectively. Note
that the noise contributions are assumed to be indepen-
dent of the amplitudes of ∆- and Σ-signals.

For convenience, we also introduce the averaged sum
signal Σi = 2Vi. Hence, Eq. (B2) can be approximated
as

∆i,n =
1

2
Σi(δn − δn−1) + κΣi + νi,n. (B3)

If one fixes index i in Eq. (B3) and takes the variance
with respect to index n, the following relation is obtained

var(∆i) =
1

2
Σ2
i var(δ) + var(νi). (B4)

The left-hand side of Eq. (B4) is obtained from the
experimental data. Figure 12 gives an example where
the light from the test light source, significantly attenu-
ated by neutral density filters, is studied. In this case,

the signal-to-noise ratio is less than one, just like for the
undulator radiation in IOTA. The horizontal axis corre-
sponds to index i. However, it is represented in nanosec-
onds for convenience.

On the right-hand side of Eq. (B4), var(νi) does not
depend on i if the noise rms amplitude is constant with
time. Therefore, the contribution from noise in Fig. 12
can be identified as the constant vertical offset. The re-
maining contribution is proportional to Σ2

i and looks like
a peak. The value of var(δ) can be extracted from the
height of this peak using Eq. (B4), and, therefore, var(N )
can be found.

In Fig. 12a, we can see that the empirical var(∆i) in-
deed takes the expected shape, i.e., a peak on top of a
constant vertical offset. In Fig. 12b, the case of smaller
fluctuations of ∆ is considered, and the peak is not as well
defined as in Fig. 12a. In Fig. 12c, the case of very small
fluctuations of ∆ is considered, and the peak cannot be
distinguished from the noise. The height of the peak is
calculated as the difference between the average in the
region between the red vertical lines (peak region), and
that in the region between the green vertical lines (noise
region). Therefore, it can be seen in Fig. 12c, that the
method may mistakenly yield a slightly negative value
for var(νi) for very small fluctuations. In all three plots
in Fig. 12 the level of the constant noise variance is ap-
proximately the same, 1.0× 10−7 V2, which supports the
hypothesis that the noise fluctuations do not change with
time or with signal level.

The observed rms noise amplitude,
√

var(noise) =
0.3 mV, was analyzed using the noise model for the de-
tector electrical schematic, Fig. 5, as well as the typi-
cal electrical characteristics of the photodiode [32] and
the operational amplifier [31]. The three main contribu-
tions to the rms noise in the ∆-channel are the follow-
ing: the oscilloscope input amplifier noise, 0.21 mV; the
operational amplifier input voltage noise, 0.18 mV; and
the operational amplifier input current noise, 0.037 mV.
When added in quadrature, these three sources explain
the measured noise.

We determine the height of the peak by subtracting
the average of the variance in the noise region from the
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FIG. 12. Examples of the noise filtering algorithm for the test
light source with different neutral density filters. (a) var(∆)
takes the expected shape, i.e., a peak on top of a constant
level; (b) Smaller fluctuations of ∆, the peak is not as well
defined as before; (c) Very small fluctuations of ∆, the peak
cannot be seen in the noise. The red curves represent the
right-hand side of Eq. (B4).

average in the peak region, as opposed to, for instance,
fitting the curve with Σ2(t), because this procedure is
more robust against small errors in the comb filter delay
and jitter of the signal period.

The noise filtering method was tested with the test
light source. We placed various neutral density filters in
front of the test light source and measured var(N ) as a
function of 〈N〉, see Fig. 13a.

When the light was not attenuated at all, or only
slightly attenuated by neutral density filters, the signal-
to-noise ratio was much larger than one and var(N ) could

be determined directly by looking at the ∆-channel wave-
form without using the noise filtering algorithm. By re-
peating this measurement many times for the same neu-
tral density filter we made sure that var(N ) was stable
in time for the test light source, see the group of points
around 〈N〉 = 1.3× 107 in Fig. 13a.

When the light intensity was reduced further, the con-
tribution from noise became substantial, and we had to
use the noise filtering method to measure var(N ). How-
ever, we could also independently predict var(N ) based
on the measurements of fluctuations in the region where
signal/noise� 1. When quantum Poisson fluctuations
can be neglected, the variance of the number of photo-
electrons var(N ) scales as η2, and the mean photoelec-
tron count 〈N〉 scales as η, where η is the attenuation
factor of the neutral density filter. Therefore, the rela-
tive fluctuation remains constant

θ ≡ var(N )

〈N〉2
= constant. (B5)

The quantum Poisson contribution to the fluctuations
in the test light source pulses could be completely ne-
glected, because var(N ) was much larger than 〈N〉 in
Fig. 13a,b, i.e., the fluctuations were dominated by the
generator’s pulse-to-pulse amplitude jitter.

From the points with signal/noise� 1 (see Fig. 13a)
it was determined that θ = 3.35× 10−6. The parabola
defined by Eq. (B5) with this value of θ is plotted in
Fig. 13a,b, solid line. It can be seen in Fig. 13a, and,
especially, in zoomed-in Fig. 13b, that the points, ob-
tained with the noise subtraction algorithm in the region
where the contribution of noise is significant, closely fol-
low the predicted parabola. In Fig. 13b, we chose a range
of var(N ), similar to the one observed in the experiment
with undulator radiation in IOTA. The agreement in this
plot shows that the noise subtraction algorithm works
well in the regime explored by the IOTA experiment. We
estimate the uncertainty of the noise filtering algorithm
from the standard deviation of the residuals between the
points in Fig. 13b and the predicted parabola. This error
is 8.2× 105 and it is also shown in Fig. 13b.

The noise filtering algorithm can remove noise that is
independent of the amplitude of the signal and whose
rms amplitude is constant with time. Sources of such
contributions to noise are, for example, oscilloscope, op-
amp in the integrator, photodiode, and most external
noise sources. However, it is important to emphasize that
the measurements with the test light source were per-
formed in a lab, not in the IOTA ring enclosure. There-
fore, we cannot completely eliminate the possibility that
in the IOTA ring enclosure the results of our measure-
ments were affected by some sources of nonlinear time-
dependent noise.
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